ISSN 1600-5368

2-(2-Nitroanilino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile

Francisco J.B. Mendonça Junior,^a Maria do Carmo A. de Lima,^b Suely L. Galdino,^b Ivan R. Pitta^b and Carlos A. de Simone^c*

^aLaboratório de Síntese e Vetorização de Moléculas Bioativas, Universidade Estadual da Paraíba, 58020-540 João Pessoa, PB, Brazil, ^bLaboratório de Síntese e Planejamento de Fármacos, Departamento de Antibióticos, Universidade Federal de Pernambuco, 50670-910 Recife, PE, Brazil, and ^cDepartamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil

Correspondence e-mail: casimone@ifsc.usp.br

Received 20 August 2010; accepted 2 September 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.174; data-to-parameter ratio = 16.9.

The title compound, $C_{15}H_{13}N_3O_2S$, was synthesized by the reaction of 2-amino-5,6,7,8-tetrahydro-4*H*-cyclohepta[*b*]thiophene-3-carbonitrile and *o*-fluoronitrobenzene. The dihedral angle between the thiophene and nitrophenyl rings is 75.15 (2)°. In the crystal, intermolecular N-H···N and C-H···O interactions lead to the formation of a supramolecular chain extending along the *c*-axis direction.

Related literature

For background to 2-substituted thiophenes, see: Puterová *et al.* (2009). For the biological activity of 2-amino-benzo[b]-thiophene derivatives, see: Fakhr *et al.* (2008); Baraldi *et al.* (2006). For the synthesis of 2-amino thiophenes, see: Gewald *et al.* (1966). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data C₁₅H₁₃N₃O₂S

 $M_r = 299.34$

organic compounds

Monoclinic $P2_1/c$	Z = 4
a = 13.2764 (4) Å	Mo $K\alpha$ radiation
b = 13.4447 (7) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 8.2237 (4) Å	T = 295 K
$\beta = 106.794 \ (2)^{\circ}$	$0.27 \times 0.19 \times 0.17 \text{ mm}$
V = 1405.30 (11) Å ³	

Data collection

Nonius KappaCCD diffractometer2351 reflections with $I > 2\sigma(I)$ 9590 measured reflections $R_{int} = 0.051$ 3241 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 192 parameters $wR(F^2) = 0.174$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.45$ e Å $^{-3}$ 3241 reflections $\Delta \rho_{min} = -0.38$ e Å $^{-3}$

Table 1	
Hydrogen-bond geometry (Å, ^o	').

$N2-H2\cdots N1^i$ 0.86	2.48 3.09	93 (3) 129
C11-H11···O1 ⁱⁱ 0.93	2.56 3.35	51 (3) 143

Symmetry codes: (i) $x, -y - \frac{1}{2}, z - \frac{1}{2}$; (ii) x, y, z + 1.

Data collection: *COLLECT* (Nonius, 1997); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work has received partial support from CNPq, CAPES, FACEPE and FINEP.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2704).

References

- Baraldi, P. G., Pavani, M. G., Leung, E., Moorman, A. R., Varani, K., Vicenzi, F., Borea, P. A. & Romagnoli, R. (2006). *Bioorg. Med. Chem. Lett.* 16, 1402– 1404.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Fakhr, I. M. I., Radwan, M. A. A., El-Batran, S., El-Salam, O. M. E. A. & El-Shenawy, S. M. (2008). *Eur. J. Med. Chem.* 44, 1718–1725.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gewald, K., Schinke, E. & Bottcher, H. (1966). Chem. Ber. 99, 99-100.
- Nonius (1997). *KappaCCD Server Software for Windows*. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Puterová, Ż., Krutosiková, A. & Végh, D. (2009). Nova Biotech. 9, 167–173. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2010). E66, o2543 [doi:10.1107/S1600536810035439]

2-(2-Nitroanilino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile

F. J. B. Mendonça Junior, M. do C. A. de Lima, S. L. Galdino, I. R. Pitta and C. A. de Simone

Comment

The various uses of 2-substituted thiophenes have been well documented (Puterová *et al.*, 2009). Amongst these applications, some 2-substituted benzo[*b*]thiophenes derivatives present anti-inflammatory and analgesic activities (Fakhr *et al.*, 2008), and others are adenosine A1 allosteric enhancers (Baraldi *et al.*, 2006). In this work, we report the structure of the title compound prepared by the reaction of 2-amino-5,6,7,8-tetrahydro-4*H*-cyclohepta[*b*]thiophene-3-carbonitrile and *o*-fluoronitrobenzene.

In the title compound, Fig. 1, the dihedral angle between least-squares planes passing through atoms of thiophene and nitrophenyl rings is 75.15 (2) °. The cyclohexane ring adopts a half-chair conformation with calculated puckering parameters of: $q_2 = 0.285$ (5) Å, $q_3 = -0.240$ (3) Å, $Q_T = 0.373$ (4) Å, $\theta = 130.2$ (3) °, $\phi = -27.5$ (6) ° (Cremer & Pople, 1975). In the packing, intermolecular N–H…N and C—H… O interactions lead to the formation a supramolecular polymeric chain that extends along the *c* direction; Table 2 & Fig.2.

Experimental

Under nitrogen and at 273 K, a dry THF solution (80 ml) of 2-amino-4,5,6,7- tetrahydro-4*H*-benzo[*b*]thiophene-3-carbonitrile (0.07 mol) and *o*-fluoro-nitrobenzene (0.07 mol) was added drop wise to a stirred suspension of NaH (0.105 mol) in dry THF (20 ml). The reaction mixture was stirred at room temperature for 24 h. The resulting mixture was adjusted to pH = 5 with 2 N HCl and then extracted with CHCl₃. The extract was washed with aqueous Na₂CO₃ and water, dried over CaCl₂, and evaporated under reduced pressure. The dark-red solid obtained was purified by recrystallization from absolute ethanol, affording the title compound as red crystals; yield 11.72 g (56%), m.pt 275–276 K (Gewald *et al.*, 1966). Crystals were grown by evaporation at room temperature of its dichloromethane solution.

NMR ¹H (200 MHz, CDCl₃) δ: 1.84–1.87 (m, 4H), 2.63–2.73 (m, 4H), 6.91 (dt, 1H, *J* = 8.6, 1.4 Hz), 7.18 (dd, 1H, *J* = 8.6, 1.0 Hz), 7.51 (dt, 1H, *J* = 8.6, 8.2, 7.4 Hz), 8.22 (dd, 1H, *J* = 8.4, 1.4 Hz), 9.6 (s, 1H) p.p.m.

Refinement

All H atoms attached were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$.

Figures

Fig. 1. Projection of $C_{15}H_{13}N_3O_2S$, showing atom labelling and 50% probability displacement ellipsoids.

Fig. 2. View of the packing along b axis showing intermolecular interactions as blue dashed lines.

2-(2-Nitroanilino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile

F(000) = 624

 $\theta = 2.9 - 27.5^{\circ}$

 $\mu = 0.24 \text{ mm}^{-1}$ T = 295 K

Prism, yellow

 $0.27 \times 0.19 \times 0.17 \text{ mm}$

 $D_{\rm x} = 1.415 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4953 reflections

Crystal data

C₁₅H₁₃N₃O₂S $M_r = 299.34$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.2764 (4) Å b = 13.4447 (7) Å c = 8.2237 (4) Å $\beta = 106.794$ (2)° V = 1405.30 (11) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer	2351 reflections with $I > 2\sigma(I)$
Radiation source: Enraf Nonius FR590	$R_{\rm int} = 0.051$
horizonally mounted graphite crystal	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Detector resolution: 9 pixels mm ⁻¹	$h = -17 \rightarrow 17$
CCD rotation images, thick slices scans	$k = -17 \rightarrow 17$
9590 measured reflections	$l = -9 \rightarrow 10$
3241 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.174$	$w = 1/[\sigma^2(F_o^2) + (0.1015P)^2 + 0.2662P]$ where $P = (F_o^2 + 2F_c^2)/3$

S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3241 reflections	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
192 parameters	$\Delta \rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.133 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.22931 (15)	-0.11377 (16)	-0.8690 (3)	0.0489 (5)
C2	-0.17013 (15)	-0.19140 (16)	-0.7859 (2)	0.0470 (5)
C3	-0.06070 (15)	-0.16847 (17)	-0.7171 (3)	0.0494 (5)
C4	0.02377 (17)	-0.2391 (2)	-0.6205 (3)	0.0620 (6)
H4A	0.0009	-0.2717	-0.5322	0.074*
H4B	0.0352	-0.2898	-0.6972	0.074*
C5	0.1254 (2)	-0.1846 (3)	-0.5417 (5)	0.1058 (12)
H5A	0.1231	-0.1586	-0.4328	0.127*
H5B	0.1823	-0.2325	-0.5196	0.127*
C6	0.1505 (2)	-0.1041 (3)	-0.6378 (6)	0.1056 (13)
H6A	0.1667	-0.1319	-0.7362	0.127*
H6B	0.2138	-0.0720	-0.5686	0.127*
C7	0.06661 (19)	-0.0251 (2)	-0.6990 (4)	0.0700 (7)
H7A	0.0705	0.0225	-0.6088	0.084*
H7B	0.0783	0.0102	-0.7948	0.084*
C8	-0.04015 (15)	-0.07297 (18)	-0.7510 (3)	0.0540 (5)
С9	-0.41366 (15)	-0.11662 (14)	-0.8689 (3)	0.0449 (5)
C10	-0.38494 (18)	-0.10942 (18)	-0.6915 (3)	0.0560 (6)
H10	-0.3142	-0.1031	-0.6314	0.067*
C11	-0.4588 (2)	-0.1114 (2)	-0.6043 (3)	0.0649 (6)
H11	-0.4374	-0.1062	-0.4865	0.078*
C12	-0.5649 (2)	-0.1210 (2)	-0.6897 (4)	0.0703 (7)
H12	-0.6145	-0.1229	-0.6298	0.084*
C13	-0.59545 (18)	-0.12779 (18)	-0.8620 (4)	0.0622 (6)
H13	-0.6665	-0.1338	-0.9202	0.075*

supplementary materials

C14	-0.52138 (16)	-0.12570 (15)	-0.9526 (3)	0.0486 (5)
C15	-0.21465 (15)	-0.28666 (18)	-0.7727 (3)	0.0519 (5)
N1	-0.25004 (17)	-0.36281 (16)	-0.7606 (3)	0.0673 (6)
N2	-0.33714 (13)	-0.11309 (15)	-0.9523 (2)	0.0524 (5)
H2	-0.3569	-0.1103	-1.0614	0.063*
N3	-0.56173 (15)	-0.13233 (14)	-1.1361 (3)	0.0572 (5)
O1	-0.49971 (14)	-0.12880 (15)	-1.2218 (2)	0.0713 (5)
O2	-0.65641 (14)	-0.14080 (17)	-1.2012 (3)	0.0866 (6)
S1	-0.15219 (4)	-0.01029 (5)	-0.86321 (8)	0.0610 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0350 (10)	0.0626 (12)	0.0490 (11)	0.0004 (8)	0.0119 (8)	0.0021 (9)
C2	0.0348 (9)	0.0602 (12)	0.0452 (10)	0.0001 (8)	0.0105 (8)	0.0005 (9)
C3	0.0342 (10)	0.0649 (12)	0.0479 (10)	0.0015 (8)	0.0103 (8)	-0.0039 (9)
C4	0.0414 (11)	0.0756 (15)	0.0637 (13)	0.0065 (10)	0.0066 (10)	0.0019 (12)
C5	0.0452 (15)	0.113 (3)	0.134 (3)	0.0006 (15)	-0.0129 (17)	0.017 (2)
C6	0.0401 (14)	0.111 (3)	0.155 (4)	-0.0094 (14)	0.0110 (17)	0.012 (2)
C7	0.0415 (11)	0.0811 (17)	0.0843 (17)	-0.0116 (11)	0.0133 (11)	-0.0086 (14)
C8	0.0371 (10)	0.0652 (13)	0.0598 (12)	-0.0011 (9)	0.0140 (9)	-0.0044 (10)
С9	0.0365 (9)	0.0465 (10)	0.0504 (10)	0.0035 (7)	0.0104 (8)	0.0042 (8)
C10	0.0433 (11)	0.0699 (14)	0.0537 (12)	0.0050 (10)	0.0123 (9)	0.0017 (10)
C11	0.0588 (14)	0.0817 (17)	0.0590 (13)	0.0141 (12)	0.0246 (11)	0.0063 (12)
C12	0.0552 (14)	0.0834 (18)	0.0825 (18)	0.0101 (12)	0.0363 (13)	0.0121 (14)
C13	0.0391 (11)	0.0643 (14)	0.0836 (17)	0.0018 (9)	0.0182 (11)	0.0075 (12)
C14	0.0375 (10)	0.0461 (10)	0.0590 (12)	0.0030 (8)	0.0088 (9)	0.0038 (9)
C15	0.0373 (10)	0.0654 (13)	0.0502 (11)	0.0030 (9)	0.0081 (8)	0.0052 (10)
N1	0.0534 (11)	0.0684 (13)	0.0759 (13)	-0.0033 (10)	0.0121 (10)	0.0102 (10)
N2	0.0335 (8)	0.0765 (12)	0.0444 (9)	0.0030 (8)	0.0069 (7)	0.0035 (8)
N3	0.0420 (9)	0.0574 (11)	0.0631 (11)	0.0020 (8)	0.0010 (8)	-0.0018 (9)
01	0.0580 (10)	0.0953 (14)	0.0540 (9)	-0.0013 (9)	0.0056 (8)	0.0017 (9)
O2	0.0413 (9)	0.1135 (16)	0.0871 (13)	0.0028 (9)	-0.0099 (9)	-0.0141 (11)
S1	0.0445 (4)	0.0594 (4)	0.0757 (5)	-0.0014 (2)	0.0119 (3)	0.0052 (3)

Geometric parameters (Å, °)

C1—C2	1.365 (3)	С7—Н7В	0.9700
C1—N2	1.397 (2)	C8—S1	1.727 (2)
C1—S1	1.720 (2)	C9—N2	1.381 (2)
C2—C15	1.428 (3)	C9—C10	1.401 (3)
C2—C3	1.432 (3)	C9—C14	1.402 (3)
C3—C8	1.358 (3)	C10-C11	1.372 (3)
C3—C4	1.508 (3)	C10—H10	0.9300
C4—C5	1.507 (4)	C11—C12	1.386 (4)
C4—H4A	0.9700	C11—H11	0.9300
C4—H4B	0.9700	C12—C13	1.360 (4)
C5—C6	1.436 (5)	C12—H12	0.9300
С5—Н5А	0.9700	C13—C14	1.395 (3)

С5—Н5В	0.9700		C13—H13		0.9300
C6—C7	1.516 (4)		C14—N3		1.451 (3)
С6—Н6А	0.9700		C15—N1		1.143 (3)
С6—Н6В	0.9700		N2—H2		0.8600
С7—С8	1.502 (3)		N3—O2		1.221 (3)
С7—Н7А	0.9700		N3—O1		1.230 (3)
C2C1N2	127.62 (19)		С6—С7—Н7В		109.7
C2—C1—S1	110.65 (15)		H7A—C7—H7B		108.2
N2—C1—S1	121.72 (16)		C3—C8—C7		125.1 (2)
C1—C2—C15	122.20 (18)		C3—C8—S1		112.21 (15)
C1—C2—C3	113.87 (19)		C7—C8—S1		122.6 (2)
C15—C2—C3	123.92 (19)		N2-C9-C10		119.80 (18)
C8—C3—C2	111.30 (19)		N2-C9-C14		123.48 (19)
C8—C3—C4	122.69 (19)		C10-C9-C14		116.71 (19)
C2—C3—C4	126.0 (2)		С11—С10—С9		121.5 (2)
C5—C4—C3	111.0 (2)		С11—С10—Н10		119.2
C5—C4—H4A	109.4		С9—С10—Н10		119.2
C3—C4—H4A	109.4		C10-C11-C12		120.8 (2)
C5—C4—H4B	109.4		C10-C11-H11		119.6
C3—C4—H4B	109.4		С12—С11—Н11		119.6
H4A—C4—H4B	108.0		C13—C12—C11		119.2 (2)
C6—C5—C4	116.8 (3)		C13—C12—H12		120.4
С6—С5—Н5А	108.1		C11—C12—H12		120.4
С4—С5—Н5А	108.1		C12—C13—C14		120.7 (2)
С6—С5—Н5В	108.1		С12—С13—Н13		119.6
С4—С5—Н5В	108.1		C14—C13—H13		119.6
H5A—C5—H5B	107.3		C13—C14—C9		121.1 (2)
C5—C6—C7	116.4 (3)		C13—C14—N3		116.7 (2)
С5—С6—Н6А	108.2		C9-C14-N3		122.25 (19)
С7—С6—Н6А	108.2		N1-C15-C2		179.4 (2)
С5—С6—Н6В	108.2		C9—N2—C1		123.57 (17)
С7—С6—Н6В	108.2		C9—N2—H2		118.2
Н6А—С6—Н6В	107.3		C1—N2—H2		118.2
C8—C7—C6	109.7 (2)		O2—N3—O1		121.8 (2)
С8—С7—Н7А	109.7		O2—N3—C14		119.0 (2)
С6—С7—Н7А	109.7		O1—N3—C14		119.12 (18)
С8—С7—Н7В	109.7		C1—S1—C8		91.95 (10)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
N2—H2···N1 ⁱ		0.86	2.48	3.093 (3)	129

2.56

0.93

3.351 (3)

143

Symmetry codes: (i) *x*, –*y*–1/2, *z*–1/2; (ii) *x*, *y*, *z*+1.

C11—H11…O1ⁱⁱ

Fig. 1

Fig. 2